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Abstract. In this paper, we propose a new approach to solve a class of optimal control problems
involving discrete-valued system parameters. The basic idea is to formulate a problem of this type
as a combination of a discrete global optimization problem and a standard optimal control problem,
and then solve it using a two-level approach. Numerical results show that the proposed method is
efficient and capable of finding optimal or near optimal solutions.

1. Introduction

Optimal Control Problems arise in many disciplines such as engineering, eco-
nomics, physics and the biomedical sciences. Many optimal control problems in-
volve system (decision) parameters which are restricted to a set of discrete values
[11, 13]. These discrete sets typically arise because a design is only allowed to use
standard-sized components or parts which are readily available, such as standard
size drill collars used in the oil and gas industry or the finite number of gear
ratios available in transmission. The essential nature of these problems is that a
cost functional g0(u, z), depending on a control function u(t) ∈ R

m and a system
parameter vector z ∈ R

p, is to be minimized subject to a dynamical system and a
set of constraints with the restriction that z ∈ Z, where Z is a discrete subset of R

p.
Note that the discrete nature of the set Z necessarily means that we are considering
a class of nonconvex optimal control problems here.

In [13], a closely related class of optimal control problems involving differen-
tial algebraic systems and integer variables is considered. The proposed solution
strategy is to fully discretize the problem by an implicit Runge-Kutta scheme,
although no numerical results are given.

In this paper, we propose a different technique. Following an approach similar
to that in [17], where an ordinary optimal control problem is solved by optimizing
over two levels, we decompose the problem into a two-level optimization problem.
At the ‘upper’ level, we are faced with a purely discrete optimization problem,
which may be solved using any suitable discrete optimization approach (such as
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Simulated Annealing, Branch and Bound, or Genetic Algorithms [2, 4, 5, 16, 22]).
Amongst these, stochastic methods generally lead to better results than determin-
istic ones [18]. For this reason, we develop a simulated annealing approach with
memory to solve the upper level problem. For each iteration of the upper level
optimization, we then solve a lower level problem where the system parameters
are fixed. This lower level problem is simply a standard optimal control problem
which may be solved by any of a variety of suitable techniques [7, 8, 12, 14, 15, 19,
20, 23, 25]. In this work, we follow the control parameterization approach, because
of its robustness and readily available software.

Note that the class of problems under consideration is distinct from the class of
discrete valued optimal control problems, where it is the control functions which
are assumed to only take on values from a discrete set. For application examples of
this type of problem, see [6, 21]. An effective numerical solution method for these
types of problems, based on the Control Parameterization Enhancing Transform
(CPET), is proposed in [10].

The rest of the paper is organized as follows. In the next section, we formulate
the class of problems under consideration. Simulated annealing with memory for
the upper level optimization is discussed in Section 3. An efficient cooling schedule
for the simulated annealing approach is developed in Section 4. In Section 5, an
example is solved to demonstrate the efficiency of the proposed method.

2. Problem Statement

Consider a process described by the following system of differential equations
defined on [0, tf ]:

ẋ(t) = f (t, x(t),u(t), z) (1)

x(0) = x0 (2)

where tf is a fixed terminal time, x = [x1, . . . , xn]T ∈ R
n, u = [u1, . . . , um]T ∈

R
m and z = [z1, . . . , zp]T ∈ R

p are, respectively, the state, control, and system
parameter vectors, while f = [f1, . . . , fn]T ∈ R

n is a continuously differentiable
function with respect to all its arguments and x0 is a given vector. Define

U = {u = [u1, . . . , um]T ∈ R
m : ci ≤ ui ≤ di, i = 1, . . . , m}

Z = {z = [z1, . . . , zp]T ∈ R
p : zi ∈ Di, i = 1, . . . , p}

where Di = {δi1, δi2, . . . , δiMi
}, i = 1, . . . , p, are given discrete sets containing Mi

real entries, respectively.
Any Borel measurable function u : [0, tf ] −→ U is called an admissible

control. Let U be the class of all admissible controls. For each (u, z) ∈ U ×
Z, let x(·|u, z) denote the corresponding solution of the system (1)–(2). Our op-
timal control problem may now be formally stated as:
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Given the dynamical system (1)–(2), find a (u, z) ∈ U × Z such that the cost
functional

g0(u, z) = �0(x(tf |u, z), z)+
∫ tf

0
L0(t, x(t|u, z),u(t), z)dt, (3)

is minimized subject to the equality constraints:

gi(u, z) = �i(x(tf |u, z), z)+
∫ tf

0
Li(t, x(t|u, z),u(t), z)dt = 0,

i = 1, . . . , Ne, (4)

and the inequality constraints:

gi(u, z) = �i(x(tf |u, z), z)+
∫ tf

0
Li(t, x(t|u, z),u(t), z)dt ≥ 0,

i = Ne, . . . , N, (5)

where �i, i = 0, 1, . . . , N, and Li , i = 0, 1, . . . , N, are real valued functions
which are continuously differentiable with respect to all their arguments. Let this
optimal control problem be referred to as Problem (P ).

The two level decomposition of Problem (P ) can be described as follows. Define
Problem (P1) as

min
z∈z ḡ0(z)

where

ḡ0(z) = min
u∈U

g0(u, z),

subject to the constraints (4) and (5). The latter problem, which involves a fixed z,
is referred to as Problem (P2). Problem (P2) is a standard optimal control problem.

Clearly, each iteration in the solution strategy for Problem (P1) requires an
optimal solution of Problem (P2). Here, we use the software MISER 3.2 [7, 8],
which is based on the control parameterization approach, to solve Problem (P2).
Note that there are other efficient optimal control softwares that may also be used
at this point. Problem (P1) can then be solved using a global optimization technique
such as simulated annealing.

3. Simulated Annealing with Memory

The Simulated annealing (SA) process is one of the more effective techniques in the
area of global optimization and a detailed analysis can be found in the references
already cited. Essentially, SA is a search procedure where each new point found
is either accepted or rejected according to a probability (governed by the so-called
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Figure 1. The neighborhood of q in a 3-dimensional problem

cooling schedule T ) which changes at the various stages. At any one stage, the
value of T controls the acceptance rate of new points in the search which result in
an increase of the objective function value, i.e. the probability of taking an ‘uphill’
step. During the first stage, the value of the cooling schedule, T0, is large. This
leads to a high probability of taking an uphill step and the acceptance rate is close
to 1. In subsequent stages, T is decreased, meaning that there is a lower probability
of taking an uphill step. This results in a lower acceptance rate. When T is close to
0, the probability of taking an uphill step is extremely low. Therefore, the cooling
schedule, T, is also known as the control parameter. This basic feature of SA allows
it to effectively avoid local minima, whilst still exhibiting the favorable features of
a local search.

To discuss SA in more detail, we first define a neighborhood structure. Let q ∈
Z. Suppose that q = [δ1

k1
, δ2

k2
, . . . , δ

p

kp
]T , then the neighborhood of q is defined by:

Nq = {
y = [y1, . . . , yp]T ∈ Z : yi = δiki+1 or yi = δiki−1

for some i = 1, . . . , p} .
For illustration, a 3-dimensional neighborhood is depicted in Figure 1. Clearly, the
size of the neighborhood, �, is equal to 2p unless q is on the boundary of Z. The
Metropolis acceptance criterion (see [1]) determines whether y is accepted from q
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at the control level T by applying the following acceptance probability

Aqy(T ) =
{

exp
{
− (g0(y)−g0(q))

T

}
, if g0(y) > g0(q),

1, otherwise.

Here, the next possible iterate y is generated from the current iterate q according
to the generating probability:

Gqy = 1

�
X(Nq )(y),

where X is a uniform distribution on Nq . In other words, the next possible iterate
of Problem (P1) is chosen randomly from the neighborhood Nq . By comparing the
value of Aqy with a random number generated from a uniform distribution on the
interval [0, 1], we then decide whether y is accepted as the next iterate or not.

The SA process sometimes accepts iterates which are worse than a current
iterate. During a particular SA run, it is therefore possible for the final iterate to
be worse than another iterate found at some point during the run. In fact, the SA
algorithm is a randomization device which, by means of an acceptance-rejection
criterion, allows some ascent steps during the optimization process. It is quite
possible that during a particular stage, the procedure will visit the optimal solution,
but due to the acceptance-rejection mechanism, it will move on from this solution
and finish at a suboptimal solution. The algorithm developed in this paper takes
such behavior into account and adds a memory gm0 (u

m, zm) to the process. At
each stage of the process corresponding to a fixed control level T , a Markov chain
is created according to the transition probability Aqy . During the execution of
each Markov chain, if a point generates a lesser objective function value than the
memory, then the memory is updated. At the conclusion of the SA process, the
memory gm0 (z

m, zm) is taken to be the optimal solution g∗
0(u

∗, z∗).

4. Cooling Schedules

The rate of convergence of the algorithm is determined by

− the choice of the initial control parameter T0,
− the decrement, αi , of the control parameters from Ti to Ti+1 and the length of

the corresponding Markov chains, Li ,
− the number of transitions generated at the i − th iteration of the metropolis

algorithm.

We discuss the choices of these parameters below.
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4.1. INITIAL VALUE OF THE CONTROL PARAMETER

To discuss the choice of the initial value of the control parameter we first define the
acceptance ratio, χ(T ), by

χ(T ) = number of accepted transitions

number of proposed transitions

∣∣∣∣
T

.

The initial control parameter T0 should be large enough to allow nearly all proposed
transitions to be accepted in the first Markov chain. This is achieved by requiring
that the initial acceptance ratio, χ(T0), is close to 1. Let {ξzi ,zi+1, i = 1, . . . , r}
be a random sequence of r transitions. Let m1 denote the number of transitions
in the sequence with g0(zi+1) ≤ g0(zi ), and let m2 be the number of transitions
with g0(zi+1) > g0(zi). Let η(ξzi ,zi+1) denote the characteristic function of the
transition ξzi ,zi+1 defined by:

η(ξzi ,zi+1) =
{

0, A(ξzi ,zi+1) < β,

1, otherwise,
(6)

where

A(ξzi ,zi+1) =
{

exp
{
− g0(zi+1)−g0(zi )

T0

}
, g0(zi+1) > g0(zi),

1, otherwise.
(7)

Here, β is a random number in the interval [0,1]. Then, we have the following
theorem.

THEOREM 4.1 Suppose {ξzi ,zi+1 , i = 1, . . . , r} is a random sequence of r in-
dependent transitions, which includes m1 cost-decreasing or cost-equal transitions
and m2 = r − m1 cost-increasing transition, and η(ξzi ,zi+1) is the characteristic
function of the transitions ξzi ,zi+1 as defined in (6) – (7). Let Sr = ∑r

i=1 η(ξzi ,zi+1).
Then we have

E(Sr) = E(m1)+ (r − E(m1)) · E
{

exp

{
−g0(z

m2
i+1) − g0(z

m2
i )

T0

}}
,

where ξzm2
i ,zm2

i+1
is any cost-increasing transition in the sequence.

Proof. We first find the conditional expectation of Sr , given the value of m1, as

E(Sr |m1 = l) = E(η(ξ1,2)+ . . . + η(ξn,n+1)|m1 = l)

= E(η(ξ1,2))+ . . . + E(η(ξn,n+1))

(with m1 = l, and m2 = r − l)

= l + (r − l)\P {
A(ξzi ,zi+1) ≥ β| g0(zi+1) > g0(zi)

}
,

where E(·), P (·) denote expectation and probability, respectively.
Let γ denote the random variable exp{− g0(zi+1)−g0(zi )

T0
}, associated with a cost-

increase transition ξzi ,zi+1 , and let f (γ ) denote the probability density function
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of γ . Further, let ν denote a random variable with a uniform distribution, defined
on the interval [0,1]. Clearly, ν and γ are independent and have joint distribution
f (γ ). Therefore, we have

P
{
A(ξzi ,zi+1) ≥ β| g0(zi+1) > g0(zi )

} =
∫ 1

0
f (γ )dγ

∫ γ

0
dν

= E(γ ) = E

{
exp

{
−g0(z

m2
i+1)− g0(z

m2
i )

T0

}}
,

where ξzm2
i ,zm2

i+1
is a cost-increasing transition.

Therefore, E(Sr) =
r∑
l=1

E(Sr |m1 = l)\P(m1 = l)

= E(m1)+ E(r −m1)\E
{

exp

{
−g0(z

m2
i+1)− g0(z

m2
i )

T0

}}

= E(m1)+ (r − E(m1))\E
{

exp

{
−g0(z

m2
i+1)− g0(z

m2
i )

T0

}}
.

Clearly, the exponential function is convex. Hence, by Jensen’s Inequality ([3]), we
have

E

{
exp

{
−g0(z

m2
i+1)− g0(z

m2
i )

T0

}}
≥ exp

{
−E

{
g0(z

m2
i+1)− g0(z

m2
i )

T0

}}

According to the above analysis, the initial acceptance ratio can be approximated
by the following expression:

χ0 ≈
m1 +m2 · exp

(−.g(+)
T0

)
m1 +m2

where .g
(+)

is the average difference in cost over m2 cost-increasing transitions.
Therefore we choose an initial acceptance ratio χ0 rather than an initial control
parameter T0. T0 can then be approximated as:

T0 = −.g(+)

ln
(

m2
m2·χ0−m1·(1−χ0

) (8)

Hence, the initial control parameter T0 and initial value of z0 can be calculated
using following procedure:
1. Create a random sequence of transitions {ξzi ,zi+1, i = 1, . . . , r}.
2. Calculate the initial value T0 of control parameter from (8).
3. Find the smallest value, g0(z

0
i ), in the sequence {g0(zi ), i = 1, . . . , r+1}. The

corresponding parameter z0
i is used as the initial value of z0.
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4.2. LENGTH OF MARKOV CHAIN AND CORRESPONDING DECREMENT OF THE

CONTROL PARAMETER

At stage i of the SA process with control parameter Ti , the length of the Markov
chain is based on the requirement that quasi equilibrium is to be restored (see
[1, 24]). The number of transitions needed to achieve this is calculated from the
intuitive argument that quasi equilibrium will be restored after acceptance of at
least some fixed number of transitions. It is clear that large decrement in Ti will
require longer Markov chain length in order to restore quasi equilibrium at the next
value of the control parameter Ti+1. In our approach, we fix the length of Markov
chain as follows.

L = L0 �,

where L0 denotes a constant and � is as defined in the previous section. The
decrement in T from stage i to stage i + 1 is given by

Ti+1 = αi Ti,

where αi is decided according to the acceptance ratio χ(Ti) of the ith stage. We use
the following algorithm.

Algorithm:
1. Calculate the acceptance ratio, χ(Ti), of the ith stage.
2. Calculate the weighted acceptance ratio, χw(Ti), of the ith stage by

χw(Ti) = ζ i χ(Ti),

where ζ > 1 is a constant.
3. Calculate the decrement αi in the following manner:

if χw(Ti) less than 0.59, then αi = 1.15

elseif χw(Ti) less than 0.69, then αi = 1.1

elseif χw(Ti) less than 0.79, then αi = 1.05

elseif χw(Ti) less than 0.84, then αi = 1.0

elseif χw(Ti) less than 0.88, then αi = 0.95

elseif χw(Ti) less than 0.92, then αi = 0.90

else αi = 0.85
Here, we fix the length of the Markov chain at stage i and let the decrement αi vary
to achieve the requirement for restoring quasi equilibrium at stage i + 1. When
the weighted acceptance ratio χw(Ti) gets smaller, the decrement αi will clearly
become larger to insure restoration of the equilibrium at the next stage. χw(T0) is
also used to prevent underestimation of the initial value of the control parameter
T0. When the iteration number i gets larger, the weight ζ i will increase. Hence, a
small decrement αi is allowed when the acceptance ratio is small.
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4.3. STOPPING CRITERIA

The stopping criterion proposed by Kirkpatrick, Gelatt and Vecchi [9] is used in
our approach. That is, the execution of the algorithm is terminated if the value of
the cost function of the solution in the last stage is unchanged for s consecutive
chains.

Summarizing, we have derived a cooling schedule depending on four para-
meters, these being the initial acceptance ratio χ0, the constant L0 for the fixed
length of the Markov chains, the constant ζ for control the decrement of the control
parameters and the stopping parameter s.

5. Numerical Experiments

To demonstrate the efficiency of the approach described in the previous sections,
a numerical example was solved. All computations were performed in Fortran 77
double precision on a Unix workstation.

Example. We are given the following system of differential equations defined
on [0, 1]:

ẋ1 = 0.3x2u1 + z1

ẋ2 = 0.1x1x3z2 + 0.25x2

ẋ3 = 0.15x4u2 + z3

ẋ4 = 0.2x3x1z4 + 0.15x4,

with initial condition x0 = (0, 0, 0, 0)T , where x = (x1, x2, x3, x4)
T ∈ R

4, u =
(u1, u2)

T ∈ R
2 and z = (z1, z2, z3, z4)

T ∈ R
4 are, respectively, the state, control

and system parameters. We define

U = {u = (u1, u2)
T ∈ R

2 : 0 ≤ ui ≤ 2, i = 1, 2},
Z = {z = (z1, z2, z3, z4)

T ∈ R
4 : zi ∈ {0, 1, 2, . . . , 9}, i = 1, 2, 3, 4}.

Further, we define U as in Section 2. The optimal control problem is:
Given the above dynamic system, find (u, z) ∈ U × Z, such that

g(u, z) = −
7∑
i=1

{(x(tf )− ai )
T (x(tf )− ai )+ ci}−1 +

∫ tf

0
(x2

3 + x2
4 + u2

2)dt

is minimized, where tf = 1 and the remainder problem parameters are given in
Table I. For Problem (P1), there are 10,000 feasible points. These are depicted
in Figure 2, which plots the corresponding objective function values. We can see
that there are several local minima. Further, the global minimum is g0(u

∗, z∗) =
-3.15274, corresponding to the optimal system parameter z∗ = (3, 6, 4, 4)T and
optimal control u∗ depicted in Figure 3.
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Table I. The parameters for the example.

i ai,j ci

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

Figure 2. The cost function plotted against x = 1000z1 + 100z2 + 10z3 + z4.

The neighborhood of any possible solution q ∈ Z for the Problem (P1) is

Nq = {y = (y1, y2, y3, y4)
T ∈ Z : ||y − q|| = 1}.

To determine the cooling schedule, we use the following parameters: χ0 = 0.9,
L0 = 2.5, ζ = 1.2 and s = 1. Initially, a random sequence is created to estimate
the initial control parameter and yield a starting point. The results obtained for
different initial point zs of the random sequence are listed in the Table II. From the
table, we see that the approach gives an optimal or a near optimal solution with
about 240 to 520 iterations of solving Problem (P2).
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Figure 3. Computed optimal control u∗.

Table II. Results for different start points zs of random sequences.

zs z∗ g∗
0 nP2

(1, 1, 1, 1)T (4, 7, 3, 3)T -2.77260 220

(2, 2, 2, 1)T (5, 6, 3, 3)T -2.92316 220

(3, 3, 3, 1)T (4, 4, 4, 3)T -2.98909 280

(4, 4, 4, 1)T (3, 6, 4, 4)T -3.15274 520

(5, 5, 5, 1)T (4, 4, 4, 3)T -2.98909 240

(6, 6, 6, 6)T (4, 4, 4, 3)T -2.98909 380

(7, 7, 7, 7)T (4, 4, 4, 3)T -2.98909 280

(8, 8, 8, 8)T (1, 9, 1, 9)T -1.87676 380

(9, 9, 9, 9)T (5, 6, 3, 3)T -2.92316 240

6. Conclusions

In this paper the optimal control problem with discrete-valued system parameter
is treated as a global discrete-valued optimization problem where each iteration
involves the solution of a standard optimal control problem. Numerical results
show that the approach is efficient, displays fast convergence, and gives optimal
or near optimal solutions.
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